
P r o g r e s s  Report 

NO. : EI87-0403 
for the period 

August 1 ,  1986 - February 28, 1987 

Cooperative Agreement NCC2-434 

Submitted to 

National Aeronautics and Space Administration 
Ames Research Center 

Moffett Field, California 94305 

Thermal Protection Materials Branch 
Dr. Howard E. Goldstein, Chief and Technical Monitor 

Thermosciences Division 
Dr. Jim Arnold, Chief 

Prepared by 

ELORET INSTITUTE 
3788 Fabian Way 

Palo Alto, CA 94303 
Phone: 408 730-8422 
Telex: 62 95 8703 

K .  Heinemann, President and Grant Administrator 
William C. Pitts, Principal Investigator 

3 April 1987 

(NASA-CR- 18OUS6) PERPORHANCE ANALYSIS OF 
AEVANCED SPACECEAFT TFS 
A u 9 .  1466 - 2E E e t .  1 S E 7  (E lcre t  Corp.) Prcqross Report, 1 

36  p 
CSCL 22B 

63/16 

N87-2 70 11 

Uaclas 
U3063 



. I  

c 

INTRODUCTION 

Spacecraft en te r ing  the  ear th 's  atmosphere r e q u i r e  a very  soph is t i ca ted  

thermal p r o t e c t i o n  system. The d e t a i l  design must be t a i l o r e d  t o  each s p e c i f i c  

v e h i c l e  based on i t s  planned mission p r o f i l e s .  For t h e  Space S h u t t l e  severa l  

types of ceramic heat  s h i e l d  mater ia ls  were developed', bo th  f l e x i b l e  and 

r i g i d .  These worked very wel l .  Nevertheless, improvements on t h e  m a t e r i a l s  a r e  

cont inuos ly  evolving. Ma te r ia l  p roper t ies  t h a t  have been s tud ied  and improved 

are h i g h  temperature l i m i t s ,  mater ia l  s t rength,  sur face  ruggedness, and 

sur face c a t a l y c i t y .  Th is  r e p o r t  presents t h e  r e s u l t s  o f  p r e l i m i n a r y  analyses 

concerning t h e  thermal p r o t e c t i o n  systems o f  f u t u r e  spacecra f t  and t h e i r  

s e n s i t i v i t y  t o  t h e  above m a t e r i a l  proper t ies.  

CATALYTIC SURFACE 

F l i g h t  t e s t s  on t h e  Space Shut t le  have d ramat i ca l l y  demonstrated t h e  

2 e f f e c t  o f  sur face c a t a l y c i t y  on t he  l o c a l  heat t r a n s f e r  r a t e  . I n  a recent  

a r c - j e t  t es t ,  Wendell Love o f  t h e  Ames Research Center, measured a s i g n i f i c a n t  

temperature increase (Fig. 1) when he painted t h e  sur face o f  h i s  low 

c a t a l y c i t y  g raph i te  model w i t h  a h igh ly  c a t a l y t i c  ma te r ia l .  An ana lys is  was 

undertaken t o  q u a n t i f y  t h e  magnitude o f  t h i s  c a t a l y t i c  e f f e c t .  

The ana lys is  was done using a f a i r l y  soph is t i ca ted  two-dimensional 

numerical model. Th is  model was designed t o  g i ve  t h e  n e t  heat f l u x  t o  t h e  

model sur face us ing t h e  measured temperature h i s t o r y  as the  boundary 

cond i t ion .  The bas ic  element i n  t h i s  a n a l y t i c a l  model i s  t h e  heat  balance 

equat ion shown i n  Fig. 2 f o r  a t y p i c a l  sur face element. The heat f l u x  h i s t o r y  

was ca l cu la ted  fo r  model runs w i t h  and w i thout  a c a t a l y t i c  coa t ing  on t h e  

model, bu t  w i t h  t h e  same arc  f l o w  condit ions. The r a t i o  o f  t h e  heat f l u x  w i t h  

t h e  c a t a l y t i c  coa t ing  t o  t h a t  without g ives a measure o f  t he  c a t a l y t i c  

e f fec t i veness  o f  t h e  coating. 



There were two major de f i c ienc ies  i n  knowledge about the  models. One was 

the  exact depth of t he  thermocouple ( repo r tab l y  about .040 inch) ,  and t h e  

other  was the  c o n d u c t i v i t y  o f  t he  model mater ia l .  The ma te r ia l  was graphi te ,  

bu t  handbooks show a f a i r l y  wide range i n  magnitude o f  thermal conduct iv i t y .  

A l l  data show the  same s i g n i f i c a n t  v a r i a t i o n  o f  c o n d u c t i v i t y  w i t h  temperature. 

For t h i s  ana lys is  i t  was assumed t h a t  because these unce r ta in t i es  were the  

same f o r  both models, t he  r a t i o  o f  the  heat f l uxes  for t he  two models would 

no t  be s i g n i f i c a n t l y  a f fected.  Subsequent s e n s i t i v i t y  checks v e r i f y  t h i s .  It 

was found t h a t  t he  use o f  a constant average thermal conduc t i v i t y  gave the  

u n r e a l i s t i c  r e s u l t  t h a t  t h e  arc  f low enthalpy increased s t e a d i l y  w i t h  t ime 

al though the  arc  parameters were a l l  steady. Use of proper temperature 

dependent c o n d u c t i v i t i e s  corrected t h i s  problem. 

The r e s u l t s  o f  t he  ana lys is  a re  tabulated i n  t h e  f o l l o w i n g  tab le :  

(Resul ts  are averages f o r  t h e  po r t i on  o f  t he  data between 8 and 30 seconds. 

P r i o r  t o  t h i s  t ime the  arc  s t a r t i n g  t rans ien ts  cause problems. A f te r  t h i s  t ime 

the  C a t a l y t i c  coa t ing  eros ion  was l i k e l y  t o  be s i g n i f i c a n t )  

& & * L I I L I I I I I I I I I  S$PP?PfjQP * X!!L* 
Nominal 1.37 +- .04 1.27 +- .04 

Nominal b u t  112 Conduct iv i t y  1.38 +- .04 1.30 +- .04 

R f l e b B Q p ~ R t 8 f C P f i ~ ~ ~ ~ 8 " ~ Y ~  1.41 +- .04 1.28 +- .04 

~ , - ~ ~ ~ ~ o ~ d P W d d ~ O P S ? ~ i ~ ~ ~ ' 9 8  2-d) *" +- 'lo 1.60 +- .08 

I t  i s  apparent t h a t  t he  c a t a l y t i c  pa in t  increased the  heat f l u x  t o  the  

s tagnat ion  reg ion  about 40% and t o  the s ide  sur face about 30%. This  t rend 



along t h e  sur face i s  as expected . As assumed, t h e  r a t i o e d  r e s u l t s  a r e  

i n s e n s i t i v e  t o  c o n d u c t i v i t y  and t o  thermocouple depth. The absolute va lues f o r  

heat  f l u x  a re  very s e n s i t i v e  t o  these parameters, bu t  t h e  magnitudes f a l l  

w i t h i n  the  expected range fo r  t h e  a rc - j e t  t e s t  condi t ions.  It i s  apparent t h a t  

a one-dimensional model i s  no t  adequate. The r a t i o  values f o r  t he  1-0 model 

d i f f e r  from those us ing  t h e  2-0 model and the  expected t rend o f  decreasing 

c a t a l y t i c  e f f e c t  along t h e  sur face i s  reversed. 

LH2 FUEL TANK INSULATION 

Most, i f  no t  a l l  f u t u r e  spacecraft w i l l  use l i q u i d  hydrogen f o r  f u e l .  

These fue l  tanks must be pro tec ted  from aerodynamic heat ing du r ing  t h e  ascent 

and descent phases o f  t h e  missions. For a l l  spacecraft,  t he re  w i l l  be 

competing op t ions  f o r  t h e  thermal p ro tec t i on  m a t e r i a l  used. A p re l im ina ry  

comparison i s  made here of t h e  performance o f  two types o f  i n s u l a t i o n  f o r  t h e  

cryogenic f u e l  tank f o r  a t y p i c a l  vehic le  and mission. One i s  the  f l e x i b l e  

ceramic f i b e r  i nsu la t i on ,  TABI and the other  i s  a layered super i nsu la t i on ,  

MLI. TABI i s  a f l e x i b l e  ceramic blanket t h a t  i s  an evo lu t i on  o f  t h e  f l e x i b l e  

ceramic b lankets  t h a t  were used sucess fu l l y  on t h e  upper surfaces o f  t h e  Space 

Shut t le .  MLI i s  a m u l t i  layered b lanket  o f  t h i n  metal f o i l s  separated by an 

open mesh c l o t h  or by dimples i n  the f o i l .  Sketches o f  t he  models used f o r  

t h e  ana lys i s  a re  shown i n  Fig.3. I n  l i e u  o f  d e t a i l e d  in fo rmat ion  on t h e  des ign 

o f  t h e  tank wa l ls ,  t h e  i n s u l a t i o n  f o r  t he  a n a l y t i c a l  model i s  fastened 

d i r e c t l y  t o  a simple aluminum w a l l  tank. The cryogenic i s  t rea ted  as a 

constant  temperature heat s ink.  The heat t rans fe r red  i n t o  t h e  tank i s  

accomodated by cryogenic b o i l o f f .  The c r i t e r i o n  f o r  comparison o f  t h e  two 

i n s u l a t i o n  systems i s  t h e  r e l a t i v e  weights when the  same amount o f  heat  i s  

t r a n s f e r r e d  i n t o  t h e  tank under i d e n t i c a l  heat ing  condi t ions.  Although 

s i m p l i f i e d ,  these models should provide a reasonable f i r s t  c u t  performance 

comparison between t h e  two systems. 



The heating environment imposed on the two systems is based on the the 

3 stagnation point heating rates calculated for a likely mission (Fig. 4). For 

modeling simplicity, the calculated heat flux history is approximated by the 

dotted line profile. The flux to the tanks will of course be much less than at 

the stagnation point so calculations were made using fluxes that were 1 and 10 

percent of the values in Fig. 4. If the flow remains laminar, the 1% level is 

most likely, but if the flow becomes turbulent, then the level may approach 

10%. 

The computer models are one-dimensional. The temperature dependent 

properties of AFRSI at .01 atm are used for the ceramic insulation, but 

because the Shuttle type ceramic insulations have similar thermal 

conductivities, the results will be representative of all of them. Because the 

mission altitude ranges from ground level to maximum mission altitude, the 

pressure dependancy of the conductivity should be included. This can be 

entered in the next step. The MLI is treated as providing an effective 

emittance to the inner surface o f  the cover plate and the outer surface of the 

tank wall. A series of calculations was made of the total heat flux into the 

tank with varying thickness for  the ceramic insulation and with varying 

effective emissivity for the MLI model. The results of these calculations are 

shown in Figs. 5(a) and 5(b) for 1% and 10% of the stagnation point heating 

level. If we assume that the two systems are thermally equivalent if they 

allow the same total heat load to the tank during the mission, then we can 

determine the conditions fo r  them to be equivalent from this figure. For 

example, for the 1% of stagnation heat case, a heat load of 2 kJ/cm is passed 

by both a 1.1 in. thick AFRSI tile and MLI with 0.055 effective emittance. 

Referring to the top of the figure, it can be seen that the surface density of 

the systems is 0.8 and 1.5 lb/ft respectively. Fig. 6 was generated in this 



manner for  a range of acceptable heat loads. It i s  apparent from these f i g u r e s  

t h a t  f o r  t he  models and assumptions of t h i s  p re l im ina ry  analys is ,  t he  TABI 

system i s  genera l l y  the  l i g h t e s t .  For  low al lowed heat loads i n t o  the  tanks 

the  MLI system can be the  l i g h t e s t .  However, i t  may n o t  be poss ib le  t o  achieve 

these low heat loads i n  a l l  cases because o f  t he  p r a c t i c a l  l i m i t s  o f  b u i l d i n g  

MLI blankets. Seams, holes and posts generaly l i m i t  t h e  e f f e c t i v e  e m i s s i v i t y  

t o  values between .01 and .02. For reference: 1 kJ  of heat  w i l l  b o i l  about 2 

grams o f  LH2 a t  1 atm. and the  heat capaci ty  o f  LH2 i s  about 1 joule/gm/K. 

The weight of the  TABI  system i n  Figs.  5 and 6 i s  j u s t  t h a t  o f  t he  

i n s u l a t i o n  p lus  an RTV bond. About 95% o f  t he  weight o f  t h e  MLI system i s  t h a t  

o f  t he  outer  cover. The weight used i s  based on data from Ref. 4 f o r  t h e  

measured weight o f  a fabr ica ted  cover f o r  an Advanced Carbon-Carbon t i l e  

designed f o r  advanced spacecraft.  The weight o f  t he  cover support posts  i s  

included. The sur face dens i ty  i s  equivalent t o  a sheet o f  aluminum 0.11 in .  

t h i ck .  I f  the  cover weight i s  ac tua l l y  d i f f e r e n t  from t h i s ,  then t h e  MLI 

weight curves w i l l  be s h i f t e d  by the weight d i f fe rence.  

Fig. 7 shows the  l i g u i d  hydrogen b o i l  o f f  as a f u n c t i o n  o f  the  TABI  

thickness. The sum o f  t he  TABI and b o i l  o f f  weights i s  a s i g n i f i c a n t  parameter 

i n  t h e  design of t h e  tank i n s u l a t i o n  th ickness. For t h i s  case i t  has a minimum 

a t  about 4.5 inches o f  TABI.  Th is  ca l cu la t i on  app l ies  t o  p o r t i o n s  o f  t he  tank 

where LH2 i s  adjacent t o  the  surface f o r  t h e  f u l l  mission. I n  a c t u a l l i t y  much 

o f  t he  tank sur face loses t h i s  heat s ink as the  f u e l  i s  used. This  f a c t o r  w i l l  

be considered i n  fu tu re  analysis.  Other fac to rs  t o  be considered are  the  

b e n e f i t s  o f  l i n i n g  the  i n s i d e  o f  the tank w i t h  foam and o f  developing a 

ceramic i n s u l a t i o n  w i t h  g r e a t l y  reduced thermal conduc t i v i t y .  

IMPACT RES1 STANCE 

It i s  important t h a t  t he  heat  sh ie lds f o r  f u t u r e  spacecraf t  be able t o  

wi thstand sur face impacts. A r i g i d  surface heat s h i e l d  t i l e  design i s  proposed 



by Riccitiello in Ref. 5. The tile consists of a rigid ceramic tile covered by 

a silicon-carbide cover that slips over the tile and is fastened in place with 

snaps. The rigid cover adds weight to the t le so a portion of the rigid tile 

is hollowed out and replaced with a low density felt. To be useful this tile 

must also be weight competitive with other ceramic tiles. As part of the 

current program an analysis was made to show that it can be. The procedure and 

results are presented in Ref. 5, and Fig. 8 is reproduced from that report. 

This figure was developed from the calculated entry heating environment of the 

proposed Entry Research Vehicle performing a set of missions with varying 

total heat load to the surface. The figure shows that there is some weight 

penalty for the rugged surface, but for high heat load missions the penalty is 

relatively small and may be acceptable. 

COMPOSITE HEATSHIELDS 

There can be an advantage to layering heatshield materials rather than using a 

single material6s7. In Ref. 7, it is shown that there is a potential advantage 

of combining MLI with the ceramic insulation, FRCI. Fig. 9 is taken from that 

report. It shows by example for  a specific Entry Research Vehicle that a 

significant mass saving can be realized by using MLI in series with a 4 cm 

thick FRCI tile. This result was based on a reasonable but assumed performance 

of MLI (its effective emissivity). To establish that this benefit can be 

achieved an MLI blanket must be designed and tested. A detailed computer model 

has been constructed for a blanket with variable number of layers, surface 

emissivities, and leakage conductance. From this computer model, blankets can 

be designed to match any effective emittance requirement. Results from the 

application of this model will be presented in the next progress report. 
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Toughened Outer Surface Reuseable Surface Insu la t ion  
f o r  Advanced Thermal Protection Systems 

by 

P i t t s ,  W. C.  and R i c c i t i e l l o ,  S. R., 

(Proposed paper f o r  A I A A  Journal o f  Spacecraft and Rockets) 



I NTRODUCT ION 

The Space S h u t t l e  Thermal Protect ion System, TPS, u t i l i z e s  a v a r i e t y  
of heat s h i e l d  ma te r ia l s ,  depending on t h e  temperature o f  t h e  l o c a l  sur face  
dur ing  ent ry .  A coated, re in forced carbonlcarbon composite i s  used on t h e  

nose cap and wing lead ing  edges where t h e  temperatures exceed 2 3 0 O O F .  High 
Temperature Reusable Surface Insulat ion',  HRSI, i s  used on t h e  lower sur-  
faces, where t h e  temperatures a re  between 1200°F and 230OoF w h i l e  a Low 
Temperature Reusable Surface Insu la t ion ,  LRSI, F l e x i b l e  Reusable Surface 
Insu la t i on ,  FRSI, and Advanced F l e x i b l e  Reusable Surface I n s u l a t i o n ,  AFRSI, 
are used on t h e  upper surfaces where t h e  temperatures do n o t  exceed 1200°F. 
A l l  o f  these m a t e r i a l s  worked f o r  the S h u t t l e  missions, b u t  t h e r e  has been 
a cont inu ing  e f f o r t  t o  make t h e  o v e r a l l  heat  s h i e l d  system more durable. 

The HRSI used on the  lower surface o f  t h e  S h u t t l e  i s  a c lass  o f  
m a t e r i a l s  r a t h e r  than a s p e c i f i c  mater ia l .  They are r i g i d ,  f i b r o u s  s i l i c a  
t i l e s ,  coated w i t h  a b lack  ( f o r  em iss i v i t y  c o n t r o l )  r e a c t i o n  cured g lass  

c a l l e d  RCG?*3 The coat ing  provides t h e  des i red  o p t i c a l  p r o p e r t i e s  f o r  t h e  
TPS, and a l s o  a ids  i n  the  handl ing o f  t h e  t i l e s  du r ing  i n s t a l l a t i o n  on t h e  
vehic le .  S h u t t l e  experience has shown t h a t  t h e  RCG i s  very s e n s i t i v e  t o  low 
energy impacts from i c e  and o ther  debr is  du r ing  launch and landing. The 
damage ranges from small  cracks and ch ips o f  t he  sur face  t o  l a rge  holes 
t h a t  expose t h e  wh i te  v i t r e o u s  t i l e  m a t e r i a l  which then me l t s  on exposure 
t o  e n t r y  heat ing.  

Advanced space t ranspor ta t i on  systems w i l l  use a form o f  r i g i d ,  
reusable sur face  i n s u l a t i o n  as pa r t  o f  t h e  TPS f o r  h igh  temperature areas 
other  than lead ing  edges, Since the  environment w i l l  be more severe than 
t h a t  o f  t h e  Space S h u t t l e  and because minimum maintenance i s  requi red,  t h e  
new i n s u l a t i o n  system w i l l  r e q u i r e  a toughened ou ter  surface, r e l a t i v e  t o  
the  s t a t e  of t h e  a r t  HRSI, that can wi thstand the  r i g o r s  o f  handl ing as 
w e l l  as impacts from smal l  t o o l s  and ice.  

The problem w i t h  t h e  Shu t t l e  HRSI i s  t h a t  t h e  glazed coa t ing  i s  an ex- 

ample o f  a t h i n  b r i t t l e  p l a t e  supported by a low dens i t y  e l a s t i c  subst rate? 
To a l e v i a t e  t h i s  problem, a new t i l e  cover c a l l e d  "Top Hat" was designed 
t o  rep lace  t h e  b r i t t l e  p l a t e  wi th a toughened outer ,  ceramic/ceramic com- 
pos i te ,  s t ruc tu re .  The "Top Hat", i s  composed o f  a ceramic, woven f a b r i c  
which has a s i l i con -ca rb ide  coat ing  deposited by chemical vapor deposi t ion.  
Major cons idera t ions  du r ing  t h e  development o f  t h e  "Top H a t "  concept were 
weight and t h e  o p t i c a l  and impact p roper t ies .  The advanced TPS being 
descr ibed i n  t h i s  paper takes i n t o  account these f a c t o r s  and compares t h e  
"Top Hat" Advanced Thermal Protect ion Ma te r ia l  System w i t h  t h e  S ta te  o f  t h e  
A r t  HRSI  ma te r ia l .  

MATE RIALS 

The the rma l *s t ruc tu ra l  performance o f  t h e  "Top Hat" concept w i l l  be 
compared w i t h  t h a t  o f  t h e  HRSI  used on t h e  Space Shut t le .  The bas ic  HRSI  
ma te r ia l s ,  composition, and fab r i ca t i on  processes have been described 

e l  sewhere 5*6,7 and there fore  w i l l  not be discussed i n  t h i s  paper. The major 
d i f f e r e n c e  between t h e  two i n s u l a t i o n  systems i s  t h e  ou te r  surface. The 



S h u t t l e  HRSI  has a RCG g laze  o r  coating w i t h  s i l i c o n  bor ide  dispersed 
w i t h i n  i t  as t h e  e m i s s i v i t y  con t ro l  agent. The coa t ing  i s  spray app l ied  t o  
t h e  f i b r o u s  i n s u l a t i o n  and f i r e d  t o  g i v e  t h e  g laze  on t h e  surface. 

The "Top Hat" i s  a t i l e  cover made as a separate u n i t  which i s  fas-  
tened t o  t h e  bas ic  i n s u l a t i o n  by i n t e g r a l  c l i p s  (Fig.1) so t h a t  t h e  
ceramic/ceramic composite t o p  i s  s t r e s s / s t r a i n  independent o f  t he  base com- 
ponent o f  t h e  t i l e .  Th is  approach e l iminates t h e  thermal s t ress  a t  h i g h  
temperature t h a t  r e s u l t s  from the  d i f f e r e n c e  i n  thermal expansion between 
t h e  t i l e  coat ing  and t h e  FRCI base. 

The "Top H a t "  i s  a woven fabric, i n f i l t r a t e d  w i t h  s i l i c o n  carb ide by 
chemical vapor deposi t ion.  For t h i s  development study, a l l  f a b r i c s  were 
made o f  "3Mf1 A6312 alumina-boria, s i l i c a  f i b e r .  Other h igh  temperature 
f i b e r s  such as "Nicalon" (TM Nipon Carbon) cou ld  be used also. The s t rength  
and impact res i s tance  o f  t h e  cover depends on t h e  weave o f  the  f a b r i c .  
Three weaves were s t reng th  tested:  a "basel ine"  weave by Hexcel, a b a l l i s -  
t i c  weave by Hexcel, and a t r i a x i s  weave by Albany In te rna t i ona l .  The "Top 
Hat" s i n g l e  p l y  ou ter  cover w i t h  the AB312 f i b e r  and "basel ine" weave, has 
an area dens i t y  o f  about 0.40 l b / f t 2  ,of which 0.30 l b / f t 2  i s  t he  S i c  
c o a t i n g / i n f i l t r a t e .  The "Top Hat" maximum use temperature i s  l i m i t e d  by t h e  
maximum temperature c a p a b i l i t y  o f  t h e  f a b r i c .  For AB312 t h i s  l i m i t  i s  ap* 

prox ima te l  y 28OO0F . 
The form o f  t h e  "Top Hat" t i l e  i n s u l a t i o n  can be t a i l o r e d  t o  meet 

s p e c i f i c  requirements. The form assembled f o r  t e s t i n g  i n  the  rad ian t  panel 
and a r c - j e t  f a c i l i t y  i s  shown i n  Fig. 2. The base t i l e  i n s u l a t i o n  used was 

FRCI-1Z8 t o  which t h e  "Top Hat" was he ld  i n  p lace  by means o f  the  c1ips.The 

FRCI-12 (12 l b / f t 3 )  was selected over t h e  s t a t e  of the  a r t  L1-900 (9  
l b / f t 3 )  i n s u l a t i o n  because o f  i t s  superior phys i ca l  proper t ies.  To make 
t h e  weight  o f  t h e  "Top Hat" comparable t o  t h e  re fe rence Shu t t l e  HRSI t i l e  a 

f r a c t i o n  o f  t he  FRCI was rep laced w i t h  a low dens i t y  ( 6  l b / f t 3 )  f e l t  
ma te r ia l .  The "3M" 440 f e l t  was se lected because i t  has t h e  temperature 

c a p a b i l i t y  t o  meet t h e  2800' F requirement. I n  t h i s  model t he  FRCI was i so -  
l a t e d  from t h e  aluminum subst rate w i t h  a s t r a i n  i s o l a t i o n  pad s ince t h i s  
was t h e  conf igura t ion  used f o r  t h e  HRSI  on t h e  Shutt le. Th is  a l lows a 
d i r e c t  comparison o f  t h e  "Top Hat" system data  w i t h  ava i l ab le  data f o r  t h e  
S h u t t l e  HRSI  system. However, f o r  f l i g h t  app l i ca t ions ,  t h e  s t rength  o f  t h e  
FRCI a l lows a d i r e c t  adhesive bonding o f  t h e  t i l e  t o  a polyimide g raph i te  
s t ruc tu re .  

E XPE R I  ME NTS 

A se r ies  o f  t e s t s  were made i n  the  process o f  developing the  "Top Hat" 
system. F i r s t  s t reng th  and toughness t e s t s  were made, then the  thermal per-  
formance was evaluated. 

Tensi le  Test 

The t e n s i l e  p r o p e r t i e s  were measured fo r  var ious  s i l i c o n  carbide i n -  
f i l t r a t e s  and f a b r i c  weaves tha t  are p o t e n t i a l  "Top Ha t "  mater ia ls .  An 
I n s t r o n  Test Machine, model 14202, was used i n  combination w i t h  a custom- 

b u i l t  h i g h  temperature furnace designed by Smith e t  al.' The t e n s i l e  
r 



specimens of t h e  coated f a b r i c s  were tes ted  a t  room temperature, llOO°F, 

and 18OOOF. The specimens were a l l  s i n g l e  p l y  s t r i p s  n ine  inches long and 
one inch  wide, w i t h  a saw c u t  i n  the t e s t  section, l eav ing  a 0.75 i nch  t e s t  
width. A two-part po l yes te r  r e s i n  was used t o  harden bo th  ends o f  t he  t e s t  
specimens t o  prevent s l ippage or crushing i n  t h e  t e s t  g r i p s  du r ing  t h e  ten- 
s i l e  p u l l .  

Impact Test  

A mod i f ied  Gardner Laboratory impac t  t es te r ,  Fig. 3, was used t o  com- 
pare t h e  impact res is tance of t h e  "Top Hat" coated f a b r i c  w i t h  t h a t  o f  RCG 
coa t ing  on t h e  Shu t t l e  HRSI. The hammer weight of t h e  t e s t e r  was .507 l b  
and t h e  impact head diameter was .375 inch. The impact t e s t e r  base was 
designed t o  ho ld  t h e  "Top Hat" mater ia l  w i t h  or wi thou t  a subs t ra te  such as 
LI900 or FRCI. The "Top Hat" mater ia l  was clamped over t h e  subs t ra te  and 
subjected t o  inc reas ing  impact l e v e l s  t o  determine t h e  th resho ld  o f  
damage . 

Thermal Shock Test 

P r i o r  t o  t e s t i n g  a "Top Hat" thermal response model, a simple thermal 
shock t e s t  was performed t o  ascer ta in  whether or n o t  t h e  coated f a b r i c  
design would su rv i ve  extreme thermal gradients .  The t e s t  invo lved p l a c i n g  

Hat" i n t o  a preheated furnace a t  2000°F then r a i s i n g  t h e  a f u l l - s c a l e  "Top 
temperature as rap  
he ld  a t  2500°F for 
and a l lowed t o  coo 
observed, t h e  par t  

d l y  as t h e  furnace would a l l ow  t o  250OOF. The model was 
about one minute, then q u i c k l y  removed from t h e  furnance 

I f  no cracks or other  damage were 
was deemed ready f o r  t he  r a d i a n t  panel t es ts .  

t o  room temperature. 

Radiant Panel Tests 

Th is  t e s t  cons is ted of p lac ing  t h e  model i n  a r a d i a n t  panel f a c i l i t y  
t h a t  used h igh  dens i t y  quar tz  lamps as the  heat source. The model sur face 

temperature was r a i s e d  a t  a con t ro l l ed  r a t e  t o  25OO0F. The i n t e r n a l  tem- 
pe ra tu re  response was measured and a post  t e s t  examination was made o f  t h e  
model. I f  the  model showed no damage and no anornolies were observed i n  t h e  
temperature data, then the  model was readied fo r  t e s t s  i n  t h e  20 megawatt 
arc-  j e t  f ac i 1 i t y  . 

Arc-Jet Test  

Th is  t e s t  was conducted i n  the Ames Research Center semi-e l l  p t i c  20 
megawatt a r c - j e t  f a c i l i t y .  The s t a t i c  pressure and heat ing  r a t e  can be con- 
t r o l l e d  up t o  maximums o f  10 mm Hg and 15 B tu / f t2 /sec  respect  ve l y  by 
va ry ing  t h e  arc  mass f l o w  and arc  current. For t he  present t e s t ,  t he  a rc  
cond i t i ons  were c o n t r o l l e d  so t h a t  a f t e r  a t r a n s i e n t  s t a r t ,  the  model sur-  
face temperature was maintained t o  a predetermined, constant value. The 
t e s t  cond i t i ons  used a re  shown i n  Table 1. 

For t h i s  tes t ,  t h e  model from the r a d i a n t  panel t e s t  was placed i n  a 
model panel holder as shown i n  F ig .  4. The "Top H a t "  t i l e  was surrounded 



by s t a t e  o f  t he  a r t  HRSI t i l e s  w i t h  one HRSI  t i l e  instrumented w i t h  sur face  
thermocouples which were used as p i l o t s  du r ing  t h e  tes t ,  The l o c a t i o n s  o f  
t h e  thermocouples i n  t h e  "Top H a t "  t i l e  and t h e  t e s t  c o n t r o l  thermocouples 
i n  the  HRSI  t i l e  are shown i n  Fig, 2. 

RESULTS AND DISCUSSION 

The t e n s i l e  t e s t  r e s u l t s  a re  shown i n  Table 2 f o r  a v a r i e t y  o f  f a b r i c  
weaves and area dens i t ies .  Both t h e  t r i a x i s  weave and t h e  b a l l i s t i c  weave 
nave super ior  t e n s i l e  p r o p e r t i e s  r e l a t i v e  t o  t h e  base l i ne  weave, depending 
on t h e  f i b e r  d i r e c t i o n .  These data suggest t h a t  t h e  good impact res i s tance  
o f  t h e  base l ine  m a t e r i a l  can be improved on. 

Since impact to le rance i s  of prime importance f o r  any f u t u r e  TPS, a 
se r ies  of impact t e s t s  was run. P o s t  impact p i c t u r e s  of t h e  specimens a re  
shown i n  Figs. 5(a) t o  5(d) .  A l l  p i c tu res  are t o  t h e  same scale. Par t  (a )  
o f  t h i s  f i g u r e  shows the  h i g h  s e n s i t i v i t y  o f  t h e  s ta teaof - the-ar t  RCG coat- 
i n g  t o  a moderate impact of 0.56 joules. None of t h e  "Top Hat" composite 
m a t e r i a l s  were damaged by t h e  same impact l eve l .  Fig. 5(b)  shows t h i s  t o  be 
t r u e  f o r  t h e  "Top H a t "  w i t h  t h e  basel ine weave. When t h e  impact l e v e l  was 
doubled t h e  "Top Hat" m a t e r i a l s  were a l l  damaged, b u t  t he  b a l l i s t i c  weave 
m a t e r i a l  suffered t h e  l e a s t  damage o f  t h e  th ree  candidate mater ia ls ,  The 
comparison between the  base l ine  and t h e  b a l l i s t i c  weaves i s  shown by t h e  
back sur face p i c t u r e s  i n  Figs. 5(c)  and 5(d) .  Note t h a t  t h e  ceramic/ceramic 
composite shows no crack propagation o r  s p a l l a t i o n  as t h e  RCG coa t ing  d id .  

The r e s u l t s  o f  t h e  impact t e s t  a re  summerized i n  Fig. 6. The th resho ld  
energy f o r  impact damage i s  shown as a f u n c t i o n  o f  t he  m a t e r i a l  sur face  
dens i ty .  The composite ma te r ia l s  are 10 t o  20 t imes more impact r e s i s t a n t  
than t h e  RCG coat ing  (0.006 jou les  vs. 0.06 t o  0.12 j o u l e s )  f o r  a sur face  

2 dens i t y  o f  0.4 l b / f t .  

The f i n a l  s tep i n  the  "Top H a t "  development was t h e  thermal response 
t e s t  done i n  t h e  a rc - j e t .  The center reg ion  temperature h i s t o r i e s  f o r  t h e  
a r c d j e t  r u n  no. 3 are shown i n  Fig. 7 f o r  t h e  Top Hat t i l e .  These tempera- 
tu res  a re  compared w i t h  i n t e r n a l  temperatures ca l cu la ted  f o r  t h e  same 
app l i ed  sur face temperatures. The system thermal response i s  as expected 
f o r  t h e  m a t e r i a l  c o n d u c t i v i t i e s  used. The temperatures along a t i l e  t ab  a r e  
shown i n  Fig. 8. These da ta  show no anomolies. The temperature a t  t h e  t o p  
o f  t h e  tab  a re  h igher  than a t  t h e  center because o f  edge e f fec ts ,  b u t  f o r  a 
g iven depth the  temperatures a t  the tab  and a t  t h e  center  a re  comparable. 
Post t e s t  examination showed no evidence o f  crack ing o f  t he  t i l e  tabs as a 
r e s u l t  o f  thermal s t ress  between the F R C I  and t h e  cover du r ing  any o f  t h e  
runs. 

The r e l a t i v e  th ickness o f  the 440 f e l t  t o  t h a t  o f  t h e  F R C I  was 
se lec ted  f o r  t h e  a r c - j e t  t e s t  t o  make t h e  Top H a t  t i l e  weight comparable t o  
t h a t  o f  t h e  c o n t r o l  HRSI. Th is  i s  n o t  necessar i l y  t h e  optimum th ickness 
r a t i o  f o r  thermal performance i n  f l i g h t .  For f l i g h t  veh ic le  app l i ca t i ons ,  
t h i s  r a t i o  w i l l  be determined from a t r a d e o f f  study between s t r u c t u r e  r e -  
quirements and weight requirements. Fig. 9 shows t h e  r e s u l t s  o f  a 
c a l c u l a t i o n  t o  show t h e  dependence of t i l e  mass on t h e  r e l a t i v e  th ickness 
o f  t h e  i n s u l a t i o n  ma te r ia l .  For these c a l c u l a t i o n s  t h e  Top Hat was assumed 
t o  be exposed t o  t h e  heat ing  environment o f  a proposed experimental AOTV 



c a l l e d  t h e  ERV" (Ent ry  Research Vehicle). For each th ickness r a t i o ,  a 
determinat ion was made o f  t h e  thickness requ i red  t o  l i m i t  t h e  back sur face  
temperature t o  t h e  s t r u c t u r a l  temperature l i m i t  o f  po ly imide  graphi te ,  540 

OF. For f e l t  th ickness l ess  than 40%. t h e  mass wi th  t h e  f e l t  on t o p  i s  
l a r g e r  than f o r  t h e  a l l  F R C I  t i l e .  The reason f o r  t h i s  i s  tha t ,  f o r  t h e  
h igh  temperatures near t h e  surface, t he  e f f e c t i v e  c o n d u c t i v i t y  o f  t h e  f e l t  
i s  h igher  t h a t  t h a t  o f  FRCI. Consequently, t he  t o t a l  t i l e  th ickness must be 
increased t o  meet t h e  bottom surface temperature c r i t e r i o n .  An a l t e r n a t i v e  
design would be t o  p u t  t he  f e l t  a t  the bottom o f  t he  t i l e  where t h e  tem- 
peratures are  lower. The r e s u l t  of in terchanging t h e  f e l t  and FRCI i s  shown 
by t h e  lower curve o f  F i g  9. 

Fig. 10 shows t h e  r e s u l t  o f  a heat s h i e l d  s i z j n g  c a l c u l a t i o n "  f o r  t h e  
lower sur face o f  t h e  ERV us ing Top Hat and F R C I  HRSI. The in teg ra ted  heat  
loads are  f o r  the range o f  heat loads over t h e  lower sur face o f  t h e  
vehicle!' The "Top Hat" design and f e l t  th ickness r a t i o  o f  Fig. 2 were used 
f o r  t h i s  analys is .  Th is  "Top H a t "  system i s  l ess  than 10% heavier ,  b u t  much 
more durable. Opt imizat ion o f  t h e  f e l t  th ickness r a t i o  would reduce t h i s  
mass d i f f e rence .  



CONCLUSIONS 

The major conclusions der ived f rom t h e  "Top Hat" development program 

1. The ceramic/ceramic "Top Hat" i s  10 t o  20 times more r e s i s t a n t  t o  

2. The "Top H a t "  ceramic/ceramics have h igher  temperature c a p a b i l i t y  

.. 3. A t  equ iva len t  weight the advanced system thermal response i s  

are: 

impact  than t h e  RCG coat ing  f o r  equiva lent  thicknesses. 

than RCG. 

s i m i l a r  t o  t h a t  o f  t he  s t a t e  o f  t h e  a r t  HRSI mater ia l .  
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lable 1. ArcdJet Test Conditions 

Surface 

Temper a t  ure 

1850 

1930 

2 250 

Heat 

Rate 

( Btu/f  t2/sec) 

8 

9 

15 



Table 2. Tenslle t e s t  daca. 

Fabr i c 

Weave 

- _ _  Baseline 

Base1 i ne 

B a l l i s t i c  

B a l l i s t i c  

Tr i axis 

Aer ia l  Sample Dimension 

Density ( i n )  

( l b / f t 2 )  Width 

0.40 0.75 

0.40 0.75 

0.35 0.75 

0.35 0.75 

0.32 0.75 

T r i a x i s  0.32 0.75 

Thickness 

0.040 

0.040 

0.045 

0.045 

0.035 

0.035 

Weave 

Direc  t ion  

F i l l  

Warp 

F i l l  

Uarp 

60' 

goo 

Tension t o  Break 

fw 
161 

138 

241 

245 

237 

180 

( W  

6OO0F 

179 

178 

194 

259 

234 

202 

1000°F 

163 

144 

146 

238 

165 

130 
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